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A B S T R A C T  

We show that Ivanov's classification of indecomposable non-local right q- 
rings is incomplete and provide a complete classification. Next, we correct 
and sharpen Byrd's classification of right q-rings. 

1. I n t r o d u c t i o n  

Given a ring R, we denote by Soc(R) and J (R)  the right socle and the Jacobson 

radical of R respectively. Given a nonempty subset S of R, we set 

r ( n ; S ) - - { ~ e n f S ~ = 0 }  and ~ ( R ; S ) = { ~ • R l a S = 0 } .  

Recall that  a ring R is said to be a right q-ring provided that  all its right ideals 

are quasi-injective right modules. The study of right q-rings was initiated by 

Jain, Mohamed and Singh [9] in 1969. In particular they proved the following 

result which we shall need in the sequel. 
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THEOREM 1.1 ([9, Theorem 2.3]): Let R be a ring. Then R is a right q-ring if 
and only if R is a right self-injective ring and every essential right ideal of R is 

an ideal 

Since then right q-rings have been studied in a number of papers [3, 4, 5, 6, 8, 

10, 11, 12, 13]. The reader is referred to [7] for a survey on the subject. 

Let n be an integer with n > 1, let D, D1,D2,. . . ,  Dn be skew fields and let 

V/j be a Di-Dj-bimodule such that  dim(D,V/j) = 1 = dim({V/j)D~), 1 < i , j  <_ n. 
Denote by Mn(D1,. . . ,  Dn; V n , . . . ,  V,-1,m V~I) the ring of n x n matrices of the 

form 
D1 V12 

D2 V23 
Da V34 

Dn-i Yn-l,n 
Vnl Dn 

where it is understood that  V/jVpq = 0 for all i ,j ,p,q. Next, let c~ be auto- 

morphisms of the skew field D. We denote by V the D-D-bimodule D and by 

V(a) the D-D-bimodule which as a left D-module is equal to DD and the right 

D-module structure is given by x ,  y = xc~(y) for all x 6 V(a). We set 

H(n; D; ~) = M , ( D , . . . ,  D; IT,..., V, V(a)). 

In 1972 Ivanov [4, Theorem 3] proved that an indecomposable right q-ring 

either is simple Artinian, or is isomorphic to a ring H(n; D; idD). Recently Jain, 

L6pez-Permouth and Syed [8, Theorem 3.13] obtained the following result. 

THEOREM 1.2: Let R be an indecomposable non-local right q-ring. Then R is 
of the form Mn ( D1, . . . ,  Dn; V12,-.-, Vn-1,m Vnl ) or simple Artinian. Conversely, 
every ring of the form Mn(D1,. . . ,Dn;V12,. . . ,  Vn-l,n, Vnl) or every simple 
Artinian ring is a right q-ring. 

We are now in a position to state our first main result. 

THEOREM 1.3: 

(1) Every ring Mn(D1,. . . ,  Dn; Vn , . . . ,  V,-l,n, Vnl) is isomorphic to a ring of 

the form H(n; D; a). 
(2) Two rings H(n; D; a) and H(n; D; fl) are isomorphic if and only if  there 

exists an automorphism 7 of the skew field D such that V-11~Ta -1 is an 
inner automorphism of D. 
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Example: Let C be the complex number field and let a be the complex conjuga- 

tion. Clearly a is not an inner automorphism of C and so H(2; C; a) ~ H(2; C; id) 

by Theorem 1.3. 

The Example shows that  the Ivanov's description of an indecomposable non- 

local right q-rings is not complete. It has to be noted that  he made a mistake at 

the very end of the proof (he wrongly stated that any two D-D-bimodules are 

isomorphic) and so his proof can be easily corrected. 

Let n be a positive integer, let A be a right q-ring with essential maximal 

right ideal P such that the module A l P  is injective, and clearly it cannot be 

embedded in ~A. Since P is an essential right ideal of A, it is a two sided ideal 

by Theorem 1.1 and so D = A l P  is a skew field. Next, let V = o D  D be a 

D-D-bimodule. Clearly V is also a D-A-bimodule. We denote by G(n; A; P) the 

ring of (n + 1) × (n + 1) matrices of the form 

D V 
D V 

D V 

D V 
AJ 

where it is understood that  VV = 0. Note that  G(0; A; p)  ___ A. 

Ivanov [4] conjectured that every right q-ring is the direct sum of a finite 

number of indecomposable non-local right q-rings and a right q-ring all of whose 

idempotents are central. Byrd [1] classified right q-rings and showed that  the 

structure of right q-rings is more complicated than it was conjectured by Ivanov. 

We state his main result [1, Theorem 6] in the following slightly different but 
equivalent form. 

THEOREM 1.4: A right q-ring is isomorphic to a finite direct product of right 
q-rings of the following kinds: 

(1) Semisimple Artinian ring. 
(2) H(n; D; idD), where idD is the identity automorphism olD. 
(3) G(n; A; P), where A is a right q-ring all of whose idempotents are central. 
(4) A right q-ring all of whose idempotents are central. 

In view of the Example, Byrd's classification of right q-rings is not complete 

(see Theorem 1.4(2)). It has to be noted that he made the same mistake as 

Ivanov in [1, Theorem 3] and his proof can be easily corrected. The main goal of 

the present paper is to correct and sharpen his classification. 
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THEOREM 1.5: A right q-ring R is isomorphic to a finite direct product of right 

q-rings of the following kinds: 

(1) Semisimple Artinian ring. 

(2) H(n; D; a), where a is an automorphism olD.  

(3) G(n; A; P), where A is a strongly regular right self injective ring. 

(4) A right q-ring all of whose idempotents are central. 

Moreover, R is a left q-ring if and only if  it is left self injective. 

Note that  in contrast with Byrd's  Theorem 1.4, the structure of rings in 

Theorem 1.5(3) is completely described. 

2. P r o o f  o f  ma in  resul ts  

Proof  of  Theorem 1.3: Given 

dl E D1, . . . ,dn  E Dn, vl E V12, . . . ,vn-1 E Vn-l,n,vn E Vnl, 

we denote by [d l , . . . ,  dn, v l , . . . ,  vn] the matrix 

dl 

'V n 

Vl 

d2 V2 
d3 v3 

dn-1 `on--1 

dn 

E Mn(D1, . . . ,  D,~; V12, • • •, V,~-l,n, V,~I). 

Clearly 

(1) 
[ e l , . . . ,  d , ,  ` o l , . . . ,  ` o , ] [ d l ,  • . . ,  d , , '  `o1,' • - - ,  `o'] = 

' ' ' ' ' ' ' + a . v ' ]  [dldl,.. + `old2,.. ., d,~d n, dl v 1 ., dn-lvn_ 1 + Vn_ld~, vnd 1 

We are now ready to prove the first s tatement of the theorem. We set R = 

Mn(D1,. . . ,Dn;V12,. . . ,V, ,-1,n,  Vnl) and D = D1. Choose 0 ~ v E V12. Since 

dim(DVm) = 1 = dim({V12}D=), Dv = vD2 and so for any d E D there exists 

uniquely determined element "y(d) E D2 with dv = v'y(d). One may easily check 

that  ~/: D + D2 is an isomorphism of rings. Clearly V2a is a D-Da-bimodule 

where the left D-module structure is given via "y: D --4 D2. Let V = DDD be a 

D-D-bimodule.  We now define a map 

3: Mn(D, D, D3 . . . ,  Dn; If, V23. • •, V,~- 1,n, V n l )  "--)" R 
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by the rule 

/3([dl, • • •, dn, vl, v2 . . . ,  vn]) = [dl, "y(d2), d3, • • •, dn, vlv, v2, • • •, vn] 

(note tha t  VlV is defined because v E V = DDD). Clearly/3 is a bijective additive 

map. Next, it follows from (1) tha t  

• . .  ! I • .  ~/ 
/ 3 ( [ d l , . . , d n ,  Vl, . , v n ] [ d ~ , . . . , d n , v l , . ,  hi) 

- -  . a '  . . ,  ' /3([dld~, . . ,  anal, dive1 + vial2,7(d2)v~ + v2 3,. vndl + 

= [dldl,  7 ( '  d2d2), d 3 '  d'3,. " , (dlv~ + vide)v, 7(d2)v~ + v2d~3,..., vnd~ + d,~v~n] 

= [dld~, 7(d2)')'(d~), d3d~,.. . ,  divvy + vlv'Y(d2), "y(d2)v~ + v2dt3,...] 

[dl,'~(d2),d3,.. d,~,vlv, v2,. . . ,vn][d~,'7(d2), '  ' ' ' ' = ., d3 , . . . ,dn ,v lv ,  v2.. . ,Vn] 
I = / 3 ( [ d l , . . . ,  dn, v l , . . . ,  vn])/3([d~, . . . ,  d~, vl . . . . .  v : ] )  

and so /3 is an isomorphism of rings. Continuing in this fashion we get tha t  

R TM M n ( D , . . . ,  D; V , . . . ,  V, Vnl). 
Fix 0 ~ w E V~I. Arguing as above we see tha t  there exists an au tomorphism 

of the skew field D such tha t  dw = wa(d) for all d E D. We now define a map 

w: H(n; D; a -~) --+ M,~(D,. . . ,  D; V , . . . ,  V, Vn~) by the rule 

w ( [ d l , . . . ,  an, vl, v2 . . . ,  vn]) = [dl, d2, d 3 , . . . ,  dn, v l , . . . ,  Vn-1, VnW]. 

Obviously w is a bijective additive map. Again making use of (1) we get 

! 
d ' ,  v , , . . . ,  v ' ] )  

= w([dld~,. . . ,  alv i + Vld~2,..., dn_lV:_ 1 + Vn_ld~,, v,,a-'(d~) + dnv~]) 

, , {Vna-l(a~) + dnv~n}w] = [dld~ . . . .  , dlv~ + vld~2,..., d,~-lv,~_l + v,~_la,~_ 1, 

' ' vnwall -I- dnvlnw] = [d~d'~,..., d~v~ + v~d'2,.. . ,  d,~_~v,~_~ + v,~_~d,_i, 
! ! ! 

= [d l , . . . ,an ,v l , v2 , . . . , vnw][d~, . . . ,dn ,V  1 ,v2 . . . , vnw ] 
, . .  = w ( [ d l , . . . ,  d,,, v l , . . . ,  vn])w([d~ . . . .  , d~, Vl,. , 

which shows tha t  w is an isomorphism of rings• Thus R -~ H(n; D; a -1) and the 

first s ta tement  of Theorem 1.3 is proved• 

We shall now prove the second s ta tement  of the theorem. We now assume that  

a and fl are isomorphisms of the skew field D such tha t  H(n; D; a) ~ H(n; D;/3). 
Let f :  H(n; D; a) --+ H(n; D;/3) be an isomorphism of rings• 

Given a positive integer i with 1 < i < n, we denote by e~ (respectively, 

e~) the matr ix  in S = H(n ;  D; a)  (respectively, S '  = H(n; D;/3)) whose (i,i) 
! ! ! entry is 1 and all other  entries zero. We set Di = eiSei and D~ = eiS ei, i = 
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1, 2 , . . . , n .  Further ,  we put  Li = eiSei+l and L~ = e~S'e~+l, i = 1, 2 , . . . , n -  1, 
! ! ! and Ln = enSel ,  L" -- enS e 1. Clearly bo th  Di and D~ are skew fields isomorphic 

to D for all i = 1 , 2 , . . . , n .  One can easily check tha t  each Li (respectively, 

L~) is an ideal of S (respectively, S !) which is simple as bo th  left and right 

S-module  (respectively, S!-module) .  We see tha t  L 1 , L 2 , . . . , L n  (respectively, 

L~, L ~ , . . . ,  L~) are all homogeneous components  of the socle of S (respectively, 

S ' ) .  Therefore  there exists a pe rmu ta t i on  (r of the set { 1 , 2 , . . . , n }  such t h a t  

f(L~) = ' Lo(i) for all i = 1, 2 , . . . ,  n. 

Set L = ~-~i=ln Li and L '  = ~--~=1 L~ and note tha t  Soc(S) = L, Soc(S ' )  = L '  

and 

(2) f ( L )  = L'. 

n n Set T = ~i=1 Di C S and T '  = ~-~i=1 D~ C_ S' .  Clearly bo th  T and T ~ are 

subrings of S and S '  respectively. Moreover,  T = ~i=1  Di and T ! = (~i=1 D~. 

Obviously S = T@L and S '  = T'@L !. Let 7r: S -+ T and 7r': S ! -~ T ! be canonical  

project ions of abel ian groups. Clearly bo th  7r and r ! are homomorph i sms  of ring. 

Since ker(Tr) = L and ker(Tr') = L !, (2) implies tha t  f induces an i somorphism 

g: T --+ T '  of  rings such tha t  

(3) gTr = 7r'f. 

Further ,  since bo th  L 2 = 0 and (L')  2 = 0, 

(4) s t  = Ir(s)t ,  l s  = t~r(s), s ' t '  = ~- ' (s ' ) t '  and t ' s '  = t '~- ' (s ' )  

for all s E S, t E L, s '  E S '  and t '  E L' .  I t  now follows from bo th  (3) and (4) 

tha t  

f ( t t )  = f ( t ) f ( t )  = (rc ' f ) ( t ) f ( t )  = (glr)( t ) f ( t )  = g ( t ) f ( t )  

for all t E T and / E L. We see tha t  

(5) f ( t e )  = g ( t ) f ( t )  and f ( i t )  = f (e)g( t )  for all t E T and t E L. 

Since the ring T (respectively, T !) is the direct sum of skew fields Di (respec- 

tively, D~), i = 1, 2 , . . . ,  n, there exists a pe rmuta t ion  V of the set {1, 2 , . . . ,  n} 

such tha t  g(Di) = D' for all i = 1,2, . , n .  We claim tha t  T = a.  Indeed, ~(i) "" 
assume tha t  T(i) ~ a(i) for some 1 < i < n. Take 0 ~ t E D~ and 0 ¢ t E L~. 

Then  t t  ~ 0 and so (5) implies tha t  

! ! 
0 ¢ f ( t t )  = g ( t ) f ( t )  E Dr(~)L~(i) = O, 
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a contradict ion.  Therefore  T = a and so 

(6) g(Di) ' i = 1 ,2 , . .  n. = D~(~), ., 

Let 1 < i < n and d E D. We denote by d (~) the 2n-tuple  [ 0 , . . . ,  0, d, 0 , . . . ,  0] 

where d is on i th  position. Analogously, given 1 ~ i <_ n -  1 and v E V, 

we denote by v (n+~) the 2n-tuple  [ 0 , . . . ,  0, v, 0 , . . . , 0 ]  where v is on (n + i ) th  

position. Finally, given v E V(a)~ v (2~) = [0 , . . . ,  0, v]. Clearly 

d(~)v (n+~) =(dv) (n+i) for all i = 1, 2 , . . . ,  n; 

v(~+~)d (~+1) =(vd) ('~+i) for all i = 1, 2 , . . . ,  n -  1; 

(7) v(2n) d O) =(vow(d)) (2n). 

Given 1 < i < n, in view of (6), g induces an a u t o m o r p h i s m  gi of the skew field 

D such tha t  

(8) g(d (i)) -- {g~(d)} (~(i)) for all d • D. 

Analogously, f induces an a u t o m o r p h i s m  fi  of the addit ive group of D such tha t  

(9) f ( v  (n+i)) = {f i (v ) )  ('~+~(i)) for all v • D. 

Given d, v • D,  we claim tha t  

fi(dv) =gi(d)fi(v) for all i = 1, 2 , . . . ,  n; 

fi(v)gi+l(d) if i ¢ n and a(i) ¢ n; 
f~(v)(gla-1)(d) if i = n and  a ( n )  ¢ n; 

(10) fi(vd) = f~(v)(flgi+l)(d) if i ¢ n and or(i) = n; 

fi~(v)(flgla-1)(d) if i = n and a(n) = n. 

Indeed, it follows from (5), (7), (8) and (9) together  t ha t  

{fi(dv)} (n+'(i)) =f ({dv}  (n+i)) = f(d(i)v(n+i)) = g(d(i))f(v (n+')) 

={gi(d)}('~(i))(f,(v)}(n+a(i)) = {g,(d)fi(v)}(n+'(')) 

which proves the first equality. The  first case of the second equal i ty in (10) is 

proved analogously. Now assume tha t  i = n and a(n) ~ n. We have 

{f~(vd)}(~+'~('~)) =f((vd}(2~)) = f(v(2'~){oFl(d)}(1)) 

=f(v(2n))g({~-l(d)} (1)) 

Z{fn(V) } (n+a(n)) { (glOL-1)(d) } (a(1)) 
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(note  t ha t  a(n) < n forces cr(1) = a(n) + 1). The  last  two cases of the  second 

equa l i ty  in (10) are proved analogously.  

Se t t ing  v = 1 and  t~ = gi(1),  i = 1 , 2 , . . . , n ,  we get  from (10) t h a t  

f~(d) =gi(d)ti for all i = 1, 2 , . . . , n ;  

[ t~gi+l(d) 
) tn(glOl-1)(d) 

-- / 

for all  d E D and  so 

{ tigi+l(d) 

(11) g~(d)t~= t~(~gi+l)(d) 
t,~(flgla-1)(d) 

i f i  # n and  a(i) ~ n; 
i f i  = n and or(n) ¢ n; 
if i ~ n and  a ( i )  = n; 
i f i  = n and a(n) = n 

i f i  ¢ n and a(i) ~ n; 
i f i  = n and a(n) ~ n; 
i f i  ¢ n and a(i) -- n; 
if i = n and c~(n) = n. 

Let  G be the  group of all  au tomorph i sms  of the  skew field D and  let  N be the  

subgroup  of all inner  au tomorph i sms  of D.  I t  is well-known t h a t  N is a no rma l  

subgroup  of G. Let  g ~-+ ~ be the  canonical  p ro jec t ion  of groups G -~ G/N. Note 

t h a t  each gi E G. 

There  are two cases to  consider.  

CASE 1: Suppose  t h a t  a ( j )  = n for some 1 < j < n. I t  follows from (11) t ha t  

gl  = g2 . . . . .  g--j = ~gj+x and  g j+ l  . . . . .  gn-1 = gn = glc~ -1 .  

and  so f lg j+ l  = gl  = gj+la forcing 7 -1 /~7a  -1 E N wi th  7 = gj+l. 

CASE 2: Suppose  t ha t  a(n) = n. According  to (11) we have t ha t  

gl  = g2 . . . . .  gn-1 = gn = /3gl O~-1 

and so ~ = 13gla -1 forcing 7 -1 /~7a  -1  E N wi th  7 = gl .  

To comple te  the  p roof  of the  theorem,  assume tha t  7 -1 /37a  -1  C N for some 

")' e G. Set  5 = 7 - 1 ~ 7 .  Define a m a p  f :  H(n; D;/~) --+ H(n; D; 5) by the rule 

f ( [ d l , . . - , d n , V l , . . . , V n ] )  = [ 7 - 1 ( d l ) , . . . , 7 - 1 ( d n ) , 7 - 1 ( V l ) , . . . , 7 - 1 ( V n ) ] .  

Clear ly  f is a bi ject ive addi t ive  map.  I t  follows from (1) d i rec t ly  t ha t  f is 

an i somorph i sm of rings. Therefore  it is enough to show tha t  H(n; D; 5) -~ 
H(n; D; a). Choose a nonzero e lement  t E D such t ha t  5(d) = ta(d)t -1 for all 

d E D.  Clear ly  5(d)t = t a ( d ) ,  d C D.  Define a m a p  g: H(n; D; 5) --+ H(n; D; a) 
by the  rule 

g([dl,. . . ,  dn, v l , . . . ,  v,~]) = [ d l , . . . ,  dn, v l , . . . ,  v~-l, v~t]. 
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Obviously g is a bijective additive map. It now follows from (1) that 

I g( [d l , . . . ,  d,~, v l , . . . ,  v n ] [ d ~ , . . . ,  d' n, v l , . . . ,  V'n] ) 

: g ( [d ld l l ,  , ' , , , , , • . .  dad n , d l v l  + v l d 2 , . . . , d n - l V n _  1 + V n - l d  n , v n S ( d l )  + dnv'n] ) 

=[didO, . . . ,  dad n,' dlvl' + vld'2," . •, d n - l v ' n -  1 + V n - l d n ,  (vn~(d~) + dnv'n)t ] 

• . _ ' ' d a v i t ]  =[dld~ , .  . ,  d~d',  dlV'l + vld'2, . . ,  d,_~v" 1 + v~_~d~, v~ta(dl) + 

= [ d l , . . . , d ~ , v b . .  ,v~t][d~, ' ' ' . . . .  ,dn ,  v l , .  . . ,  Vnt] 
I - -g ( [d , , . . . ,  d~, v l ,  . . . , vn])g([d~, . . . , d~, Vl, . . . , V/n]) 

which shows that  g is an isomorphism of rings. The proof is thereby complete. 

I 

LEMMA 2.1: L e t  A be a r ight  s e l f  i n j ec t i ve  r ing  in which  e v e r y  i d e m p o t e n t  is 

centra l  and let  M be an in jec t i ve  s imp le  r ight  A - m o d u l e .  T h e n  there  ex i s t s  an 

i d e m p o t e n t  v C A such t ha t  M y  = M and  v A  is a s t r o n g l y  regular  r ight  s e l f  

i n j ee t i ve  ring. 

P r o o ~  Let J ( A )  denotes the Jacobson radical of A. Set A = A / J ( A )  and let 

a ~-~ ~, a E A, be the canonical projection of rings A -+ A. It follows from [15, 

Corollary 4.10 and Theorem 4.7] that every idempotent of A is of the form 

where u -- u 2 E A. Therefore idempotents in A are central and 

(12) A is a right self injective strongly regular ring. 

It follows from Zorn's lemma that there exists a family {x~ [ i C I} of elements 

of J ( A )  maximal with respect to the property ~-~ieI x i A  = ( ~ I  x~A.  Set K = 

~ i E I  xiA" Let w A  be an injective hull of K where w = w 2 E A. Pick idempotents 

wi E w A ,  i E I ,  such that each w i A  is an injective hull of x~A. Since idempotents 

in A are central and x i  C w~A, we have 

(13) w w i = w ~ = w i w  and w i x ~ = x i = x ~ w i  for a l l i c I .  

As ~-~icl x i A  = ( ~ e l  x i A ,  we conclude that ~-:~el w~A = ( ~ i e I  w~A and so 

(14) {w~ I i E I} is a family of pairwise orthogonal central idempotents of A. 

Obviously 

(15) w A  is an injective hull of ~ w i A .  
i q I  
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We claim that  

(16) wg(A)  = J(A) .  

It is enough to show that (1 - w)J (A)  = O. Assume to the contrary that 

(1 - w ) g ( A )  ~ 0 and pick 0 ~ y E (1 - w ) J ( A ) .  Clearly y A M w A  = 0 and whence 

yA M ( ~ c I  x iA  -- 0, a contradiction to the choice of the family (x~ ] i E I}. 

Therefore (16) is proved. 

We define a homomorphism of right A-modules f :  (~iez wiA --~ ( ~  x iA  by 

the rule wi ~-~ xiwi, i E I. Since wi is central, we see that f (wi )  -= wixi, i E I. 

Recalling that wA is an injective right A-module containing both (~ieI  wiA and 

(~ie l  xiA, we conclude that f can be extended to an endomorphism of wAA. 

Obviously End(wAA) -= w A w  and so there exists x E w A w  such that  f ( y )  = xy 

for all y E ~ i e x  wiA. In particular, wixi ~- f (wi)  = xwi = wix and because 

x iA  C wiA, we have that 

(17) wix = w~xi = xi for all i E I. 

We claim that  

(18) x E J(A) ,  and w A  is an injective hull of xA. 

Indeed, assume to the contrary that  x ~ J(A) .  Clearly • is a nonzero element 

of the ring A and so (12) implies that  there exists y E A such that ~yy is a 

nonzero idempotent. It is well-known that there exists a nonzero idempotent 

u E A with xy  - u E J (A)  (see [15, Corollary 4.10 and Theorem 4.7]). Since 

x E wA, (1 - w)x = 0 and so (1 - w)u E J(A) .  Recalling that idempotents in A 

are central, we see that  (1 - w)u = 0 because the Jacobson radical of a ring does 

not contain nonzero idempotents. Therefore wu -= u and whence 0 ~ uA c wA.  

Next, J(A)  ~ wi(xy - u) -= (w~x)y - wiu = x~y - wiu by (17) and so wiu E J(A)  

(because xi E J(A))  forcing wiu = 0 for all i E I. Since ( ~ e x  xiA is an essential 

submodule of wA and 0 ~ uA C_ wA, there exist a nonempty finite subset 

Io C_ I and elements ai E A, i E Io, such that  0 ¢ ~ ie Io  xiai E uA M ~iEl xiA" 
Pick j E Io with xjaj  ¢ O. Then 0 ¢ x ja j  = wj ~ ie lo  xiai E ~3juA = O, a 

contradiction. Therefore x E J(A) .  Finally, by (17), xA  D xw~A = w~xA = x~A 

for all i E I and so xA  D K.  We see that xA  is an essential submodule of wA 

and whence (18) is proved. 

Now let P = r(A; M).  Since M is a simple right A-module, P is a primitive 

right ideal of A. Let B -- {b E A [ b 2 = b E P} and let Q = ~beBbA" Clearly 

Q _c P.  We claim that 

(19) P = J (A)  + Q. 
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Indeed, the inclusion P D J ( A )  + Q is obvious. Therefore  it is enough to show 

tha t  P C_ Q. Every  ideal of a regular  ring is genera ted by idempotents .  Given an 

idempoten t  ~ E P ,  u E P ,  by [15, Corol lary 4.10 and Theo rem 4.7] there exists 

an idempoten t  a E A with u -  a E J ( A )  C p (i.e., ~ = ~) and so a E P forcing 

a E B and whence (19) is proved. 

Set t ing A t = A / Q ,  we denote by a ~ a ~ the canonical  project ion of rings 

A --4 A'.  Obviously  P '  = J ( A ) '  forcing P '  C_ J ( A ' ) .  Clearly A ' / P '  ~- A l P  -~ 

A / P .  We see t ha t  A l P  is a skew field because P is a pr imit ive  right ideal of the 

s t rongly regular  ring A (see (12)). Therefore  A ' / P '  is a skew field as well. We 

conclude tha t  

(20) A'  is a local ring with  max ima l  ideal P '  = J ( X ) .  

Since Q c_ P -- r (A;  M ) ,  M is At-module  canonically. By  assumpt ion  M is 

an injective simple right A-module.  Therefore  M is an injective simple right 

At-module.  Since over a local ring simple modules  are isomorphic,  we conclude 

from (20) tha t  A'  is a right V-ring. Therefore  J ( A ' )  --- 0 by [16, 23.1(i)] forcing 

P = Q. By (18), x E J ( A )  C_ p -- Q and whence there exist b l , b 2 , . . . , b n  E B 
n and a l ,  a 2 , . . . ,  a,~ E A such tha t  x -- ~-,~=1 biai. Since each bi E P ,  1 - bi ~ P .  

Recalling tha t  P is a pr ime ideal of A and idempoten ts  in A are central,  we 

conclude t ha t  v = (1 - 51)(1 - b2 ) . . .  (1 - bn) ¢ P .  Therefore  1 - v E P forcing 

M ( 1 - v )  = 0 and so M v  = M .  Next,  clearly vbt -~ 0 for a l l t  = 1 , 2 , . . . , n  

and whence v x  = ~ = 1  vb~ai = 0. Therefore  v A M  x A  = 0. I t  now follows from 

(18) tha t  v A  A w A  = 0 and whence (16) implies tha t  v A  fq J ( A )  = 0. We see 

t ha t  v A  -~ ( v A ) / ( v A  M J ( A ) )  = ~A is a right self injective s t rongly regular  ring 

because A is so by (12). The  proof  is complete.  I 

R e m a r k  2.2: A ring R = G(n; A; P )  is not  left self injective. 

Proo~ Given an integer 1 _< i < n, we denote by ei the ma t r ix  in R whose 

(i, i) en t ry  is 1 and all other  entries zero. Set e = el and L -- e lRe2 .  Clearly 

eRe  ~- A l P  = D is a skew field and dim(eReL) = 1. Choose any 0 ~ p  E L 

and note t ha t  eRep  = L. Define a m a p  f :  L --+ e r e  by the rule ( x p ) f  = x 

for all x E e r e .  Clearly f is a well-defined addit ive map.  We claim tha t  f is 

a h o m o m o r p h i s m  of left R-modules .  To this end, note tha t  R e  = eRe.  Take 

y E L and z E R. Clearly y = x p  for some x E eRe .  Since ey  = y, z y  = (ze)y .  

Recalling tha t  R e  = eRe ,  we see tha t  ze  = eze. Therefore  zy  = (ezexe )p  and so 

( zy )S  = ( [ e z e x e ] p ) S  = e z e x e  = (eze)(e e) = ( e)(exe) 

= = z (yS)  
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which proves our claim. Since RR is injective, there exists r C R such that  

y f  = yr for all y • L. As ye2 = y for all y • L, we may assume without loss 

of generality that  r • e2R. As e2R -= e2Re2 + e2Re3, we see that  re = re1 -= O, 

contradicting L f  • eRe. The proof is thereby complete. I 

Remark  2.3: Let A be a ring such that  the following conditions are fulfilled: 

(1) Every right ideal of A is two sided. 

(2) For any a E A and any A-module map f :  aA --+ A there exists an element 

b c A such that  f x  = xb for all x C aA. 

Then every left ideal of A is two sided. 

Proof'. I t  is enough to show that  Aa is an ideal of A for any a C A. Given a 

nonempty subset S C_ A, we set 

~ ( S ) = { x • A I x S = O }  and r ( S ) = { x • A I S x = O } .  

We claim that  g(r(Aa)) = Aa. Indeed, Aa C_ i(r(Aa)) .  Let b • i (r(Aa)) .  Then 

bx = 0 for all x • A with ax = 0. Therefore the map f :  aA -+ hA, ax ~-+ bx, is 

well defined and so there exists an element c E A with f y  = cy for all y E Aa. In 

particular, b = f a  = ac which prooves our claim. Finally, r(Aa) is a right ideal 

and so it is an ideal of A. Therefore Aa = i (r(Aa))  is an ideal of A as well. The 

proof is completed. I 

Incidentally, an immediate consequence of the above remark is that  every right 

duo right principally injective ring is left duo. 

Proof of Theorem 1.5: Making use of Theorems 1.2 and 1.3, we obtain that  every 

right q-ring R is isomorphic to a finite direct product of rings of the following 

kinds: 

(1) Semisimple Artinian ring. 

(2) H(n; D; a) ,  where a is an automorphism of D. 

(3) G(n; A; p ) ,  where A is a right q-ring all of whose idempotents are central. 

(4) A right q-ring all of whose idempotents are central. 

Now consider a ring G(n; A; P). Since M -- A / P  is an injective A-module, 

Lemma 2.1 implies that  there exists an idempotent v • A such that  M v  = M and 

vA is a strongly regular right self injective ring. The first part  of Theorem 1.5 

now follows from obvious isomorphism G(n; A; P) ~- G(n; vA; vP)  × (1 - v)A 

together with Remark 2.3. 

To prove the last s tatement of the theorem ,we now assume that  R is left self 

injective. It  follows from both Remark 2.2 and the first part  of the theorem that  

R is isomorphic to a finite direct product of rings of the following kinds: 
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(1) Semisimple Art in ian  ring. 

(2) H(n; D; a) ,  where a is an au tomorph i sm of D. 

(3) A right q-ring all of whose idempoten ts  axe central.  

Clearly every semisimple axtinian ring is bo th  a left and a right q-ring. According 

to [8, Corol lary 3.12] every ring of the form H(n; D; a) is a left q-ring. Finally, 

it follows from bo th  Theo rem 1.1 and R e m a r k  2.3 tha t  every self injective right 

q-ring is also a left q-ring. The  proof  is thereby complete.  | 
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