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ABSTRACT

We show that Ivanov’s classification of indecomposable non-local right g-
rings is incomplete and provide a complete classification. Next, we correct
and sharpen Byrd’s classification of right ¢-rings.

1. Introduction

Given a ring R, we denote by Soc(R) and J(R) the right socle and the Jacobson
radical of R respectively. Given a nonempty subset S of R, we set

r(R;S)={a € R|Sa=0} and {¢(R;S)={a€ R|aS =0}

Recall that a ring R is said to be a right ¢-ring provided that all its right ideals
are quasi-injective right modules. The study of right ¢-rings was initiated by
Jain, Mohamed and Singh [9] in 1969. In particular they proved the following
result which we shall need in the sequel.
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THEOREM 1.1 ([9, Theorem 2.3]): Let R be a ring. Then R is a right ¢-ring if
and only if R is a right self-injective ring and every essential right ideal of R is
an ideal.

Since then right ¢g-rings have been studied in a number of papers 3, 4, 5, 6, 8,
10, 11, 12, 13]. The reader is referred to [7] for a survey on the subject.

Let n be an integer with n > 1, let D, Dy, Da,..., D, be skew fields and let
V;j be a D;-Dj-bimodule such that dim(p,V;;) = 1 = dim({V;;}p,), 1 <4, < n.
Denote by Mp(D1,...,Dn; Via, ..., Vacin, Va1) the ring of n x n matrices of the

form
D, Vio

Dy V3
D3 Vi

) Dn—l Vn—l,n
an Dn
where it is understood that V;;V,q = 0 for all 4,5,p,q. Next, let o be auto-
morphisms of the skew field D. We denote by V the D-D-bimodule D and by
V(a) the D-D-bimodule which as a left D-module is equal to pD and the right
D-module structure is given by z * y = za(y) for all z € V(). We set

H(n;D;a) = M,(D,...,D;V,...,V,V(2)).

In 1972 Ivanov [4, Theorem 3] proved that an indecomposable right ¢-ring
either is simple Artinian, or is isomorphic to a ring H(n; D;idp). Recently Jain,
Loépez-Permouth and Syed [8, Theorem 3.13] obtained the following result.

THEOREM 1.2: Let R be an indecomposable non-local right g-ring. Then R is
of the form M, (D1, ...,Dp;Vi2,..., Va1, Va1) or simple Artinian. Conversely,
every ring of the form M,(D1,...,Dn;Via,...,Va_1,n, Va1) or every simple
Artinian ring is a right q-ring.

We are now in a position to state our first main result.

THEOREM 1.3:
(1) Every ring Mp(D1,...,Dn; Vi2,...,Va_1n, Va1) is isomorphic to a ring of
the form H(n; D; ).
(2) Two rings H(n; D;a) and H(n; D; B) are isomorphic if and only if there
exists an automorphism « of the skew field D such that y~Bya~! is an
inner automorphism of D.
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Example: Let C be the complex number field and let « be the complex conjuga-
tion. Clearly « is not an inner automorphism of C and so H(2; C; o) % H(2;C;id)
by Theorem 1.3.

The Example shows that the Ivanov’s description of an indecomposable non-
local right ¢-rings is not complete. It has to be noted that he made a mistake at
the very end of the proof (he wrongly stated that any two D-D-bimodules are
isomorphic) and so his proof can be easily corrected.

Let = be a positive integer, let A be a right ¢-ring with essential maximal
right ideal P such that the module A/P is injective, and clearly it cannot be
embedded in AA. Since P is an essential right ideal of A, it is a two sided ideal
by Theorem 1.1 and so D = A/P is a skew field. Next, let V = pDp be a
D-D-bimodule. Clearly V is also a D-A-bimodule. We denote by G(n; A; P) the
ring of (n + 1) x (n + 1) matrices of the form

DV
DV
DV
D Vv
A
where it is understood that VV = 0. Note that G(0; A; P) = A.

Ivanov [4] conjectured that every right g-ring is the direct sum of a finite
number of indecomposable non-local right ¢-rings and a right ¢-ring all of whose
idempotents are central. Byrd [1] classified right ¢-rings and showed that the
structure of right g-rings is more complicated than it was conjectured by Ivanov.

We state his main result {1, Theorem 6] in the following slightly different but
equivalent form.

THEOREM 1.4: A right g-ring is isomorphic to a finite direct product of right
g-rings of the following kinds:
(1) Semisimple Artinian ring.
(2) H(n;D;idp), where idp is the identity automorphism of D.
(3) G(n; A; P), where A is a right q-ring all of whose idempotents are central.
(4) A right ¢-ring all of whose idempotents are central.

In view of the Example, Byrd’s classification of right ¢-rings is not complete
(see Theorem 1.4(2)). It has to be noted that he made the same mistake as
Ivanov in {1, Theorem 3] and his proof can be easily corrected. The main goal of
the present paper is to correct and sharpen his classification.
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THEOREM 1.5: A right q-ring R is isomorphic to a finite direct product of right
g-rings of the following kinds:

(1) Semisimple Artinian ring.

(2) H(n; D;a), where a is an automorphism of D.

(3) G(n; A; P), where A is a strongly regular right self injective ring.

(4) A right g-ring all of whose idempotents are central.
Moreover, R is a left ¢-ring if and only if it is left self injective.

Note that in contrast with Byrd’s Theorem 1.4, the structure of rings in
Theorem 1.5(3) is completely described.

2. Proof of main results
Proof of Theorem 1.3: Given

di€Dq,...,dy € Dy, v1 € Vig,...,Un_1 € V,,_lm,vn € Va1,

we denote by {[dy,...,dn,v1,...,v,] the matrix
d1 U1
d2 V2

d3 V3
. S Mn(Dla--an;Vl%-“vVn—l,n» Vn1)~

dno1 Upoa
Un dn
Clearly
) [d1,- .oy dn,v1,y ey vg)[dls - dn, v, U] =

[dldll, ey dnd;m dl'l)i + ’U]dlz, vy dn—lv;l—l + 'Un—ld:n Undll + dnv;;]

We are now ready to prove the first statement of the theorem. We set R =
M, (D1,...,Dn;Viz, ..., Vu_1,n, Va1) and D = D;. Choose 0 # v € V5. Since
dim(pVis) = 1 = dim({Vi2}p,), Dv = vD; and so for any d € D there exists
uniquely determined element y(d) € D, with dv = vy(d). One may easily check
that v: D — D, is an isomorphism of rings. Clearly Va3 is a D-Djs-bimodule
where the left D-module structure is given via y: D — Dy. Let V = pDp be a
D-D-bimodule. We now define a map

IB: Mn(DvDaDS-'-7Dn;VaV23~--aVn—1,naan) =R
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by the rule
B([d1y- .y dn,v1,v2 .., 0,]) = [d1,7(d2),ds, . . ., dn, v10, V2, . . ., Uy

(note that vyv is defined because v € V = pDp). Clearly 3 is a bijective additive
map. Next, it follows from (1) that

B(d1, -y dnyv1y .y vpldy, - di, vl U0])

= B([d1dy, - . ., dnd.,, d1v] + v1dy, ¥(da)vh + vody, . . ., vad) + dpvl])
= [d1d}, v(dadb), dady, . . ., (d1v) + vids)v, ¥(da)vh + vady, . . ., vnd + dyvl]
= [did}, y(d2)y(dy), dads, . . ., diviv + vivy(dy), Y(d2)vh + vads, . . ]
= [d1,7(d2),ds, . - ., dn, V10,2, . . ., U] [d], Y(d}), db, - . ., AL V10, VY - ., U]
=B([d1, .-, dnyv1, - ;0 )BUdY, - - o iy vy, U]

and so @ is an isomorphism of rings. Continuing in this fashion we get that

R2M,(D,....D;V,...,V, V1)

Fix 0 # w € V,,1. Arguing as above we see that there exists an automorphism

« of the skew field D such that dw = wa(d) for all d € D. We now define a map
w: H(n; D;a™Y) - M, (D,...,D;V,...,V,V,1) by the rule

w(ldy, ..., dn,v1,02...,0,)) = [d1,d2,d3, ..., dp,v1, . .., Up_1, Urw].
Obviously w is a bijective additive map. Again making use of (1) we get

w(ldi, .. dnyv1y. . vpl[de, o dl, vy, 0]
=w([didy, ..., d10] + vidy, ... dn1vh_y + vp_1d), v (dy) + davl)
=[did},...,d1vi +vids, ... dno1vl_1 + Vp_1dh_1, {vea”(d}) + dnv), }w]
= [did},...,d1v] +vnidh, ... dp1V),_ + Vpo1d_q, vwd + dpv)w]
=[d1,...,dn,v1,02,...,vwld, ..., d},v], 05 .., v W]
=w([dy,...,dn,v1,. ., o)) w([d}, ... di, v, Uh))

which shows that w is an isomorphism of rings. Thus R & H(n; D;a™!) and the
first statement of Theorem 1.3 is proved.

We shall now prove the second statement of the theorem. We now assume that
o and B are isomorphisms of the skew field D such that H(n; D; ) & H(n; D; ).
Let f: H(n; D; o) — H(n; D; ) be an isomorphism of rings.

Given a positive integer ¢ with 1 < ¢ < n, we denote by e; (respectively,
e;) the matrix in S = H(n; D;a) (respectively, S’ = H(n;D;3)) whose (i,%)
entry is 1 and all other entries zero. We set D; = ¢;Se; and D] = e]S'¢}, i =
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1,2,...,n. Further, we put L; = e;Se; 41 and L = ¢;S'e; ;,i=1,2,...,n—1,
and L, = e, Sey, L], = €], S’¢|. Clearly both D; and D; are skew fields isomorphic
to D for all i = 1,2,...,n. One can easily check that each L; (respectively,
L) is an ideal of S (respectively, S’) which is simple as both left and right
S-module (respectively, S’-module). We see that Lq,Ls,..., L, (respectively,

Y, LY, ..., L}) are all homogeneous components of the socle of S (respectively,
S’). Therefore there exists a permutation o of the set {1,2,...,n} such that
F(Ly) = L;(i) foralli=1,2,...,n.

Set L =31 L;and L' = ¥ | L} and note that Soc(S) = L, Soc(S') = L'
and

(2) fLy=1r'

Set T =531 ,D;CSand T =3, D, CS" Clearly both T and T' are
subrings of S and S’ respectively. Moreover, T = @.._, D; and T" = .., D;.
Obviously § = T®Land 8’ =T'®L’. Let m: S — T and 7’: S’ — T" be canonical
projections of abelian groups. Clearly both 7 and ' are homomorphisms of ring.
Since ker(w) = L and ker(n’) = L', (2) implies that f induces an isomorphism
g: T — T’ of rings such that

3) gt =7'f.
Further, since both L? = 0 and (L')* = 0,
(4) st =n(s)l, bs={n(s), s =7'(s)¢ and €& =0n'(s)

forallse S,£c L, s € S and ¢ € L'. It now follows from both (3) and (4)
that

F(t) = fO) f(&) = (7' ))() f(€) = (gm) () F(£) = g(£) f (&)
forallt € T and £ € L. We see that

(5) fty=g@®)f() and f(ft)= f(£)g(t) foralltc T and L€ L.

Since the ring T (respectively, T”) is the direct sum of skew fields D; (respec-
tively, D!), ¢ = 1,2,...,n, there exists a permutation 7 of the set {1,2,...,n}
such that g(D;) = D'T(i) for all 4 = 1,2,...,n. We claim that 7 = ¢. Indeed,
assume that 7(7) # o(¢) for some 1 < i < n. Take 0 #t € D; and 0 # £ € L.
Then t£ # 0 and so (5) implies that

0# f(t6) = g(t)f (&) € Dyl =0,
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a contradiction. Therefore 7 = ¢ and so

Let 1 <i < n and d € D. We denote by d® the 2n-tuple [0,...,0,d,0,...,0]
where d is on ith position. Analogously, given 1 < ¢ < n—1 and v € V,
we denote by v("*+9) the 2n-tuple [0,...,0,v,0,...,0] where v is on (n + %)th
position. Finally, given v € V(a), v(®™ =[0,...,0,v]. Clearly

dOy(+) =(gy) ") forall i =1,2,...,n;
GO = (y @)D foralli=1,2,...,n~1;
(7) @D =(pa(d)) .

Given 1 < i < n, in view of (6), g induces an automorphism g; of the skew field
D such that

(8) g(dD) = {g:(d)}*®) for alld € D.

Analogously, f induces an automorphism f; of the additive group of D such that
(9) FOU) = {£,(v)}*+°E) for allw € D.

Given d,v € D, we claim that

fi(dv) =gi(d) fi(v) foralli=1,2,...,n;

e @ Fiemamd o) in
(vd) = g ifi=nand o(n)#n;
10) 0D = K@) (Bois)(d) i€ #n and (i) = n

fn(v)(Bara™t)(d) ifi=n and o(n)=n.

Indeed, it follows from (5), (7), (8) and (9) together that
{£ild0) o) =f({du}*+)) = f(dD™HD) = g(d) f(o"*D)
=g @} D {£;(0)} D) = {g,(d) fi(w)} " @)

which proves the first equality. The first case of the second equality in (10) is
proved analogously. Now assume that i = n and a(n) # n. We have

{Fa(od) Y70 = £ ({0d} ) = f(o@Ha" (@)})
:f(@@n))g({a—l(d)}(l))
={Fn (@)} (g1 (@)} D)
={fn(v)(gra ) (d)} o)
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(note that o(n) < n forces o(1) = o(n) + 1). The last two cases of the second
equality in (10) are proved analogously.
Setting v = 1 and ¢; = g;(1), i =1,2,...,n, we get from (10) that

fi{d) =gi(d)t; foralli=1,2,....n
t'igi+l(d) ifi #n and o(3) # n;
(d) = tn(gra™t)(d) ifi=nand o(n) #n;
fild) = t:(Bgiy1)(d) ifi#nand o(i) =mn;
tn(Bgia™1)(d) ifi=nanda(n)=n

for all d € D and so

Zg]H.l(d) ifi #nand o) #n;
) ta(g1re7)(d) ifi=n and o(n) # n;
(1 g:(d)ts = (ﬂ;zﬂ)(d) if i # n and o(i) = n;

tn(Bgia™1)(d) ifi=n and o(n)=n.

Let G be the group of all automorphisms of the skew field D and let N be the
subgroup of all inner automorphisms of D. It is well-known that N is a normal
subgroup of G. Let g — § be the canonical projection of groups G — G/N. Note
that each g; € G.

There are two cases to consider.

CaseE 1: Suppose that o(j) = n for some 1 < j < n. It follows from (11) that

Gi=02=-=7;=Pgj+1 and gjp1=-=Fa-1=0n=g107".
and so Bg;+1 = 91 = gj11@ forcing v~ 'Bya~! € N with y = gi+1-
CASE 2: Suppose that o(n) = n. According to (11) we have that
G=9='"=0n1=0n=Pgia!

and so g1 = Bg1a~1! forcing v~ 1Bya~! € N with v = g;.
To complete the proof of the theorem, assume that y~!8ya~! € N for some
v € G. Set § = y~'By. Define a map f: H(n; D; 8) — H(n; D;4) by the rule

f([dlv' . "dn"vlv' . "'Un]) = [’7—1(‘11) Y l(d ) (Ul) ’7_1(1}”)]'

Clearly f is a bijective additive map. It follows from (1) directly that f is
an isomorphism of rings. Therefore it is enough to show that H(n;D;§) =
H(n; D;a). Choose a nonzero element ¢ € D such that §(d) = ta(d)t™! for all
d € D. Clearly §(d)t = ta(d), d € D. Define a map g: H(n; D;48) - H(n; D; o)
by the rule

g([dl, . .‘,dn,vl,.. .,'Un]) = [dl, .. .,dn,’l)l, N .,’Un_l,’l)nt].
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Obviously g is a bijective additive map. It now follows from (1) that

g([d1,- - dny vy vn][dY, ooy diyy v, -y Un])
=g([drd}, .., dnd},, d1v] +v1ds, ..., dn_1v),_1 + Vn_1d,,, va8(d)) + dpv,,))
=[d1d}, ... ,dnd},d1v] + v1dy, ... dp_10),_1 + Vn_1dy, (V,0(d)) + dnv},)E]
=[didy, ..., dund],, d1v] +v1dy, ... dy_1V)_1 + Vp_1dy, pta(dy) + dav,t]
=[d1, -y dny V1, -y nt][dy, ey dl, VY, L UL
=g([d1,. .-, dn,v1,-- v ))g((dy, - - - o, vy, -, )

which shows that g is an isomorphism of rings. The proof is thereby complete.
|

LEMMA 2.1: Let A be a right self injective ring in which every idempotent is
central and let M be an injective simple right A-module. Then there exists an
idempotent v € A such that Mv = M and vA is a strongly regular right self
injective ring.

Proof: Let J(A) denotes the Jacobson radical of A. Set A = A/J(A) and let
a ' @, a € A, be the canonical projection of rings A — A. It follows from [15,
Corollary 4.10 and Theorem 4.7] that every idempotent of A is of the form @
where u = u? € A. Therefore idempotents in A are central and

(12) A is a right self injective strongly regular ring.

It follows from Zorn’s lemma that there exists a family {z; | ¢ € I} of elements
of J(A) maximal with respect to the property ) ;. ; r;A = @, 7:iA. Set K =
®,c; ziA. Let wA be an injective hull of K where w = w? € A. Pick idempotents
w; € wA, 7 € I, such that each w; A is an injective hull of z; A. Since idempotents
in A are central and z; € w; A, we have

(13) ww; = w; = w;w and w;x; = 1; = 2;w; foralli € 1.

As Y i1 TiA = @y TiA, we conclude that 3, w; A = P;c; wiA and so
(14) {w; | ¢ € I} is a family of pairwise orthogonal central idempotents of A.
Obviously

(15) wA is an injective hull of @wiA.
i€l
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We claim that
(16) wJ(4) = J(A).

It is enough to show that (1 — w)J(4) = 0. Assume to the contrary that
(1—w)J(A) # 0 and pick 0 # y € (1—w)J(A). Clearly yANwA = 0 and whence
YyAN P;c;ziA = 0, a contradiction to the choice of the family {z; | ¢ € I}.
Therefore (16) is proved.

We define a homomorphism of right A-modules f: €D;c; wiA — ;¢ 7:A by
the rule w; — z;w;, 1 € I. Since w; is central, we see that f(w;) = w;z;, 7 € I
Recalling that wA is an injective right A-module containing both @, ; w;A and
@ie ; TiA, we conclude that f can be extended to an endomorphism of wAg4.
Obviously End(wA ) = wAw and so there exists z € wAw such that f(y) = zy
for all y € ,;c;wiA. In particular, wir; = f(w;) = Tw; = w;z and because
;A C w; A, we have that

(17) w;T = w;x; = x; foralliel.
We claim that
(18) z € J(A), and wA is an injective hull of zA.

Indeed, assume to the contrary that z ¢ J(A). Clearly T is a nonzero element
of the ring A and so (12) implies that there exists y € A such that 7y is a
nonzero idempotent. It is well-known that there exists a nonzero idempotent
u € A with zy — u € J(A) (see [15, Corollary 4.10 and Theorem 4.7]). Since
z € wA, (1 —w)r =0 and so (1 — w)u € J(A). Recalling that idempotents in A
are central, we see that (1 — w)u = 0 because the Jacobson radical of a ring does
not contain nonzero idempotents. Therefore wu = « and whence 0 # A C wA.
Next, J(A) 3 w;(zy — u) = (wiz)y — w;u = z;y — wiu by (17) and so w;u € J(A)
(because z; € J(A)) forcing w;u = 0 for all i € I. Since @),y z:A is an essential
submodule of wA and 0 # uA C wA, there exist a nonempty finite subset
Iy C I and elements a; € A, i € Iy, such that 0 # 3, ; =ia; € uAN D) 7:4.
Pick j € Iy with zja; # 0. Then 0 # zja; = w; Y,y Tia; € wjud =0, a
contradiction. Therefore z € J(A). Finally, by (17), zA D zw; A = w;zA = ;A
for all i € I and so zA DO K. We see that A is an essential submodule of wA
and whence (18) is proved.

Now let P = r(A4; M). Since M is a simple right A-module, P is a primitive
right ideal of A. Let B={be A|b> =be P} and let Q = 3, 5 bA. Clearly
Q C P. We claim that

(19) P = J(A)+Q.



Vol. 127, 2002 AN EXAMPLE OF A RIGHT ¢-RING 313

Indeed, the inclusion P 2 J(A) + Q is obvious. Therefore it is enough to show
that P C Q. Every ideal of a regular ring is generated by idempotents. Given an
idempotent @ € P, u € P, by [15, Corollary 4.10 and Theorem 4.7] there exists
an idempotent a € A with u —a € J(A) C P (i.e., @ = u) and so a € P forcing
a € B and whence (19) is proved.

Setting A" = A/Q, we denote by a — o' the canonical projection of rings
A = A'. Obviously P’ = J(A)' forcing P’ C J(A'). Clearly A'/P' = A/P =
A/P. We see that A/P is a skew field because P is a primitive right ideal of the
strongly regular ring A (see (12)). Therefore A’/P’ is a skew field as well. We
conclude that

(20) A’ is a local ring with maximal ideal P’ = J(A').

Since @ € P = r(4; M), M is A'-module canonically. By assumption M is
an injective simple right A-module. Therefore M is an injective simple right
A’-module. Since over a local ring simple modules are isomorphic, we conclude
from (20) that A’ is a right V-ring. Therefore J(A’) = 0 by [16, 23.1(i)] forcing
P =@Q. By (18), z € J(A) C P = @ and whence there exist by,bs,...,b, € B
and ai,as,...,a, € A such that r = ) - b;a;. Since each b; € P, 1 — b; ¢ P.
Recalling that P is a prime ideal of A and idempotents in A are central, we
conclude that v = (1 — b;)(1 — bg)...(1 — b,) & P. Therefore 1 — v € P forcing
M( —v) =0 and so Mv = M. Next, clearly vb; = 0 for all t = 1,2,...,n
and whence vz = Y ., vba; = 0. Therefore vANzA = 0. It now follows from
(18) that vANwA = 0 and whence (16) implies that vA N J(A) = 0. We see
that vA = (vA)/(vAN J(A)) = T4 is a right self injective strongly regular ring
because 4 is so by {12). The proof is complete. | |

Remark 2.2: A ring R = G(n; A; P) is not left self injective.

Proof: Given an integer 1 < ¢ < n, we denote by e; the matrix in R whose
(i,7) entry is 1 and all other entries zero. Set e = e; and L = e;Res. Clearly
eRe =% A/P = D is a skew field and dim(cgeL) = 1. Choose any 0 # p € L
and note that eRep = L. Define a map f: L — eRe by the rule (zp)f = =
for all € eRe. Clearly f is a well-defined additive map. We claim that f is
a homomorphism of left R-modules. To this end, note that Re = eRe. Take
y € L and z € R. Clearly y = zp for some z € eRe. Since ey = y, 2y = (ze)y.
Recalling that Re = eRe, we see that ze = eze. Therefore zy = (ezexe)p and so

(zy) f =([ezexelp) f = ezexe = (eze)(exe) = (z€)(exe)
=z(exe) = z[(exep) f] = 2(yf)
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which proves our claim. Since gR is injective, there exists r € R such that
yf =yrforally € L. As ye; = y for all y € L, we may assume without loss
of generality that r € e;R. As es R = egRey + egRes, we see that re = re; = 0,
contradicting Lf € eRe. The proof is thereby complete. ]

Remark 2.3: Let A be a ring such that the following conditions are fulfilled:
(1) Every right ideal of A is two sided.
(2) For any a € A and any A-module map f: a4 — A there exists an element
b € A such that fx = zb for all z € aA.
Then every left ideal of A is two sided.

Proof: 1t is enough to show that Aa is an ideal of A for any a € A. Given a
nonempty subset S C A, we set

((SYy={zcA|zS=0} and 7r(S)={ze€ A|Sz=0}.

We claim that £(r(Aa)) = Aa. Indeed, Aa C £(r(Aa)). Let b € £(r(Aa)). Then
bx = 0 for all z € A with ax = 0. Therefore the map f: aA — bA, ax — bz, is
well defined and so there exists an element ¢ € A with fy = cy for all y € Aa. In
particular, b = fa = ac which prooves our claim. Finally, r(Aa) is a right ideal
and so it is an ideal of A. Therefore Aa = £(r(Aa)) is an ideal of A as well. The
proof is completed. ]

Incidentally, an immediate consequence of the above remark is that every right
duo right principally injective ring is left duo.

Proof of Theorem 1.5: Making use of Theorems 1.2 and 1.3, we obtain that every
right g-ring R is isomorphic to a finite direct product of rings of the following
kinds:

(1) Semisimple Artinian ring.

(2) H(n;D;a), where « is an automorphism of D.

(3) G(n; A; P), where A is a right ¢-ring all of whose idempotents are central.

(4) A right g-ring all of whose idempotents are central.

Now consider a ring G(n; A; P). Since M = A/P is an injective A-module,
Lemma 2.1 implies that there exists an idempotent v € A such that Mv = M and
vA is a strongly regular right self injective ring. The first part of Theorem 1.5
now follows from obvious isomorphism G(n; A; P) = G(n;vA;vP) x (1 —v)A
together with Remark 2.3.

To prove the last statement of the theorem ,we now assume that R is left self
injective. It follows from both Remark 2.2 and the first part of the theorem that
R is isomorphic to a finite direct product of rings of the following kinds:
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(1) Semisimple Artinian ring.

(2) H(n; D;a), where o is an automorphism of D.

(3) A right ¢-ring all of whose idempotents are central.
Clearly every semisimple artinian ring is both a left and a right ¢-ring. According
to [8, Corollary 3.12] every ring of the form H(n; D;a) is a left g-ring. Finally,
it follows from both Theorem 1.1 and Remark 2.3 that every self injective right
g-ring is also a left g-ring. The proof is thereby complete. |
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